

Bringing the HPC Reconstruction Algorithms to Big Data Platforms

Nikolay Malitsky

New York Scientific Data Summit: Data-Driven Discovery

August 17, 2016

a passion for discovery

Outline

- □ Spark as an integrated platform for the Big Data and Big Computing applications
- Spark In-Situ Data Access Approach
- Ptychographic Application
- ☐ Spark-Based Distributed Deep Learning Solvers
- ☐ SHARP-SPARK Project
- Summary

Closing a Gap between Big Data and Big Computing

Motivation: New Frontiers

Leaders: Spark MPI

^{*}G. Fox at al. HPC-ABDC High Performance Computing Enhanced Apache Big Data Stack, CCGrid, 2015

Three Directions

- Spark Model + MPI-oriented extension
- MPI Model + Spark-oriented extension
- New Model

topic of this talk

Spark ecosystem and proposed extensions for experimental facilities

DATA LAYER

Database vs HDF5 models

No SQL

Array-Oriented Model:

SciDB, MonetDB, etc.

Column Family Model:

Bigtable, Cassandra, etc.

Document-Oriented Model:

MongoDB, CouchDB, etc.

Graph Model:

Neo4j, etc.

The key data model concepts:

- Group a collection of objects (including groups)
- Dataset a multidimensional array of data elements with attributes and other metadata
- Datatype a description of a specific class of data element
- Attribute a named data value associated with a group, dataset, or named datatype

Present version: single file oriented

Large-Scale HDF5-Oriented Development

Spark In-Situ Data Access Approach

Supported file formats:

- Text files (plain, JSON, CSV)
- Hadoop InputFormat with arbitrary key and value
- Hadoop SequenceFile with arbitrary key and value
- Object files with the RDD values previously saved using the Java/Python serialization
- HDF5 (research projects*)

SQL and **NoSQL** Databases:

- Java Database Connectivity (JDBC)
- HBase
- Cassandra
- MongoDB
- Neo4j

Heterogeneous Data Layer

J. Liu et al. H5Spark: Bridging the I/O Gap between Spark and Scientific Data Formats on HPC Systems, CUG, 2016

PTYCHOGRAPHIC APPLICATION

Ptychography

Ptychography is one of the essential image reconstruction techniques used in light source facilities. This method consists of measuring multiple diffraction patterns by scanning a finite illumination (also called the probe) on an extended specimen (the object).

S. Marchesini et al. SHARP: a distributed, GPU-based ptychographiv solver, LBNL-1003977, January, 2016

 $\psi_i = P(r-r_i)O(r)$

Ptychography Algorithm (in math)

Iteration loop based on the difference map¹:

$$\psi^{n+1} = \psi^n + \beta \Delta(\psi^n)$$

$$\Delta = \pi_1^{\circ} f_2 - \pi_2^{\circ} f_1$$

$$f_i(\psi) = (1 + \gamma_i)\pi_i(\psi) - \gamma_i \psi$$

Projection operators associated with the modulus and overlap constraints:

$$\pi_a (\psi): \psi \to \mathbf{F}^* \frac{\mathbf{F}\psi}{|\mathbf{F}\psi|} \sqrt{\mathbf{I}}$$

$$\pi_o (\psi): \psi \to P(\mathbf{r} \cdot \mathbf{r}_i) O(\mathbf{r})$$

Object and probe updates from the minimization of the cost function²:

$$\begin{split} \epsilon &| = \| \Psi - \Psi^0 \|^2 = \sum_j \sum_r |\psi_j(\mathbf{r}) - P^0(\mathbf{r} - \mathbf{r}_j) O^0(\mathbf{r})|^2 \\ \frac{\partial \epsilon}{\partial O^0} &= 0 \colon O^0(\mathbf{r}) = \frac{\sum_j \psi_j(\mathbf{r}) P^*(\mathbf{r} - \mathbf{r}_j)}{\sum_j |P(\mathbf{r} - \mathbf{r}_j)|^2} \\ \frac{\partial \epsilon}{\partial P^0} &= 0 \colon P^0(\mathbf{r}) = \frac{\sum_j \psi_j(\mathbf{r} + \mathbf{r}_j) O^*(\mathbf{r} + \mathbf{r}_j)}{\sum_j |O(\mathbf{r} + \mathbf{r}_j)|^2} \end{split}$$

⁽²⁾ P. Thibault et al. Probe retrieval in ptychographic coherent diffractive imaging, Ultramicroscopy, 109, 2009

⁽¹⁾ V. Elser, Phase retrieval by iterated projections, J. Opt. Soc Am. A, 2003

Ptychography Approach (in pictures*)

Sample space

$$\pi_o(\psi): \psi \to P(\mathbf{r} \cdot \mathbf{r}_j)O(\mathbf{r})$$

$$O^{0}(\mathbf{r}) = \frac{\sum_{j} \psi_{j}(\mathbf{r}) P^{*}(\mathbf{r} - \mathbf{r}_{j})}{\sum_{j} |P(\mathbf{r} - \mathbf{r}_{j})|^{2}}$$

$$P^{0}(\mathbf{r}) = \frac{\sum_{j} \psi_{j}(\mathbf{r}+\mathbf{r}_{j})0^{*}(\mathbf{r}+\mathbf{r}_{j})}{\sum_{j} |0(\mathbf{r}+\mathbf{r}_{j})|^{2}}$$

$$\pi_a \left(\psi \right) : \psi \to F^* \frac{F \psi}{|F \psi|} \sqrt{I}$$

Detector space

S. Marchesini, Fast Scalabale methods for ptychographic imaging, SHARP workshop, LBNL, Oct 8, 2014

SHARP GPU-Based Solver and NSLS-II Application

SHARP-NSLS2

Functions	Time, s	
	256 frames	512 frames
Modulus & overlap projections	0.06	0.12
Probe update	0.025	0.05
Object update	0.03	0.06

Multi-GPU Approach

ALS Streaming Pipeline¹

NSLS-II Spark-based SciDriver²

⁽²⁾ N. Malitsky and N. D'Imperio, SciDriver: Driving Beamline Streams with HPC Applications, BNL LDRD Proposal, 2016

⁽¹⁾ S. Marchesini et al. SHARP: a distributed, GPU-based ptychographic solver, LBNL-1003977, 2016

SPARK-BASED DISTRIBUTED DEEP LEARNING SOLVERS

Deep Learning Approach – 1 of 2

Deep learning is an active area of machine learning, achieving a state-of-the-art performance in multiple application domains, ranging from visual object recognition to reinforcement learning. The major category of methods is based on multi-layer (deep) architectures using the convolution neural network model.

A brief (and incomplete) history of the convolution neural network model:

- D. H. Hubel and T. N. Wiesel, "Receptive fields, binocular interactions, and functional architecture in the cat's visual cortex, "Journal of Physiology, vol. 160, 1962
- K. Fukushima, "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position, "Biological Cybernetics, vol. 36, 1980
- Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition, "Proc. of the IEEE, vol. 86, 1998

K. Yager (CFN) and D. Yu (CSI), Deep Learning for Analysis of Materials Science Data, BNL

Deep Learning Approach – 2 of 2

- DistBelief, Google:
- J. Dean et al. Large Scale Distributed Deep Networks, NIPS 2012
- Caffe, UC Berkeley: http://caffe.berkeleyvision.org/
 Y. Jia et al., Caffe: Convolution Architecture for Fast Feature Embedding, ACM International Conference on Multimedia, 2014
- **TensorFlow, Google:** https://www.tensorflow.org/
 M. Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, Preliminary White Paper, November 2015
 Open source: Nov 2015, Distributed version: April 2016

Model Parallelism

Data Parallelism

SparkNet*

Philipp Moritz, Robert Nishihara, Ion Stoica, and Michael Jordan. AMPLab, UC Berkeley

URL: https://github.com/amplab/SparkNet

P. Moritz, R. Nishihara, I. Stoica, and M. Jordan. SparkNet: Training Deep Networks in Spark, ICLR, 2016

CaffeOnSpark*

Andy Feng, Jun Shi, and Mridul Jain. Yahoo Big ML Team

URL: https://github.com/yahoo/CaffeOnSpark

API: Python/Scala

Engine Wrapper: Scala/Java/C++

TensorSpark*

Christopher Nguyen, Chris Smith, Ushnish De, Vu Pham, and Nanda Kishore. Arimo

URL: https://github.com/adatao/tensorspark

API: Python

Engine Wrapper: Python/C++


```
# define a worker function that calls the TensorFlow wrapper
def train_partition(partition):
    return TensorSparkWorker(...).train_partition(partition)

# access the Spark context
sc = pyspark.SparkContext(...)

# load data on distributed workers and cache them in memory
training_rdd = sc.textFile(...).cache()

# start the Tornado-based parameter server
param_server = ParameterServer(...)
param_server.start()

# start a training loop
for i in range(num_epochs):
    # run the train_partition function on a ributed workers
    training_rdd.mapPartitions (train_partition).collect()
```

Fragment of the Driver script

C. Nguyen et al. Distributed TensorFlow on Spark: Scaling Google's Deep Learning Library, Spark Summit, February 2016

PySpark*

https://cwiki.apache.org/confluence/display/SPARK/PySpark+Internals

SHARP-SPARK

SHARP-SPARK

Benchmark results on 4 nodes

Approach	Time, s
MPI Allreduce based on MVAPICH2	0.013
SHARP-SPARK based on the CaffeOnSpark library	0.016

```
def wf(args):
  comm = Communicator.createCommunicator(args['rank'], args['size'])
 # 1. allocate buffers used in the peer-to-peer communication
  imageSize = 2*1000000
  comm.allocate(imageSize*4)
  # 2. connect to the address server and
  # exchange the RDMA addresses
comm.connect(args['addr'])
  # define a local array (e.g. image)
  a = np.zeros(imageSize, dtype=np.float32)
  a[imageSize-1] = 1.0
 # 3. sum peers' arrays for several iterations
  t1 = datetime.now()
  or i in range(0, 10):
    comm.allSum(a)
  t2 = datetime.now()
 # prepare and return the benchmark results
  out = {
    'a': a[imageSize-1],
    'time': (t2-t1),
  comm.release()
  return out
```

Worker's function of the benchmark application

Summary

- ☐ Outlined Spark as an integrated platform for the Big Data and Big Computing applications at experimental facilities
- □ Presented the SHARP-SPARK application highlighting the MPI-oriented development of the Spark computational model

Acknowledgement

SHARP Team, CAMERA, LBNL: H. Krishnan, S. Marchesini, T. Perciano, J. Sethian, D. Shapiro

CaffeOnSpark Team, Yahoo: A. Feng, J. Shi, M. Jain

HXN Group, NSLS-II, BNL: X. Huang

Control Group, NSLS-II, BNL: M. Cowan, L. Flaks, A. Heroux, K. Lauer, R. Petkus

Computational Science Lab, CSI, BNL: N. D' Imperio, D. Zhihua

Information Technology Division, BNL: R. Perez

